# [−][src]Struct ethnum::U256

A 256-bit unsigned integer type.

## Implementations

`impl U256`

[src]

`pub const `**MIN**: Self

[src]

**MIN**: Self

The smallest value that can be represented by this integer type.

`pub const `**MAX**: Self

[src]

**MAX**: Self

The largest value that can be represented by this integer type.

`pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>`

[src]

Converts a string slice in a given base to an integer.

The string is expected to be an optional `+`

sign followed by digits.
Leading and trailing whitespace represent an error. Digits are a subset
of these characters, depending on `radix`

:

`0-9`

`a-z`

`A-Z`

# Panics

This function panics if `radix`

is not in the range from 2 to 36.

# Examples

Basic usage:

assert_eq!(U256::from_str_radix("A", 16), Ok(U256::new(10)));

`pub fn count_ones(self) -> u32`

[src]

Returns the number of ones in the binary representation of `self`

.

# Examples

Basic usage:

let n = U256::new(0b01001100); assert_eq!(n.count_ones(), 3);

`pub fn count_zeros(self) -> u32`

[src]

Returns the number of zeros in the binary representation of `self`

.

# Examples

Basic usage:

assert_eq!(U256::MIN.count_zeros(), 256); assert_eq!(U256::MAX.count_zeros(), 0);

`pub fn leading_zeros(self) -> u32`

[src]

Returns the number of leading zeros in the binary representation of
`self`

.

# Examples

Basic usage:

let n = U256::MAX >> 2u32; assert_eq!(n.leading_zeros(), 2);

`pub fn trailing_zeros(self) -> u32`

[src]

Returns the number of trailing zeros in the binary representation of
`self`

.

# Examples

Basic usage:

let n = U256::new(0b0101000); assert_eq!(n.trailing_zeros(), 3);

`pub fn leading_ones(self) -> u32`

[src]

Returns the number of leading ones in the binary representation of
`self`

.

# Examples

Basic usage:

let n = !(U256::MAX >> 2u32); assert_eq!(n.leading_ones(), 2);

`pub fn trailing_ones(self) -> u32`

[src]

Returns the number of trailing ones in the binary representation of
`self`

.

# Examples

Basic usage:

let n = U256::new(0b1010111); assert_eq!(n.trailing_ones(), 3);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn rotate_left(self, n: u32) -> Self
```

[src]

Shifts the bits to the left by a specified amount, `n`

, wrapping the
truncated bits to the end of the resulting integer.

Please note this isn't the same operation as the `<<`

shifting
operator!

# Examples

Basic usage:

let n = U256::from_words( 0x13f40000000000000000000000000000, 0x00000000000000000000000000004f76, ); let m = U256::new(0x4f7613f4); assert_eq!(n.rotate_left(16), m);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn rotate_right(self, n: u32) -> Self
```

[src]

Shifts the bits to the right by a specified amount, `n`

, wrapping the
truncated bits to the beginning of the resulting integer.

Please note this isn't the same operation as the `>>`

shifting operator!

# Examples

Basic usage:

let n = U256::new(0x4f7613f4); let m = U256::from_words( 0x13f40000000000000000000000000000, 0x00000000000000000000000000004f76, ); assert_eq!(n.rotate_right(16), m);

`pub const fn swap_bytes(self) -> Self`

[src]

Reverses the byte order of the integer.

# Examples

Basic usage:

let n = U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ); assert_eq!( n.swap_bytes(), U256::from_words( 0x1f1e1d1c_1b1a1918_17161514_13121110, 0x0f0e0d0c_0b0a0908_07060504_03020100, ), );

`pub const fn reverse_bits(self) -> Self`

[src]

Reverses the bit pattern of the integer.

# Examples

Basic usage:

let n = U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ); assert_eq!( n.reverse_bits(), U256::from_words( 0xf878b838_d8589818_e868a828_c8488808, 0xf070b030_d0509010_e060a020_c0408000, ), );

`pub const fn from_be(x: Self) -> Self`

[src]

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

# Examples

Basic usage:

let n = U256::new(0x1A); if cfg!(target_endian = "big") { assert_eq!(U256::from_be(n), n); } else { assert_eq!(U256::from_be(n), n.swap_bytes()); }

`pub const fn from_le(x: Self) -> Self`

[src]

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

# Examples

Basic usage:

let n = U256::new(0x1A); if cfg!(target_endian = "little") { assert_eq!(U256::from_le(n), n) } else { assert_eq!(U256::from_le(n), n.swap_bytes()) }

`pub const fn to_be(self) -> Self`

[src]

Converts `self`

to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

# Examples

Basic usage:

let n = U256::new(0x1A); if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }

`pub const fn to_le(self) -> Self`

[src]

Converts `self`

to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

# Examples

Basic usage:

let n = U256::new(0x1A); if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_add(self, rhs: Self) -> Option<Self>
```

[src]

Checked integer addition. Computes `self + rhs`

, returning `None`

if
overflow occurred.

# Examples

Basic usage:

assert_eq!((U256::MAX - 2).checked_add(U256::new(1)), Some(U256::MAX - 1)); assert_eq!((U256::MAX - 2).checked_add(U256::new(3)), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_sub(self, rhs: Self) -> Option<Self>
```

[src]

Checked integer subtraction. Computes `self - rhs`

, returning `None`

if
overflow occurred.

# Examples

Basic usage:

assert_eq!(U256::new(1).checked_sub(U256::new(1)), Some(U256::ZERO)); assert_eq!(U256::new(0).checked_sub(U256::new(1)), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_mul(self, rhs: Self) -> Option<Self>
```

[src]

Checked integer multiplication. Computes `self * rhs`

, returning `None`

if overflow occurred.

# Examples

Basic usage:

assert_eq!(U256::new(5).checked_mul(U256::new(1)), Some(U256::new(5))); assert_eq!(U256::MAX.checked_mul(U256::new(2)), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_div(self, rhs: Self) -> Option<Self>
```

[src]

Checked integer division. Computes `self / rhs`

, returning `None`

if
`rhs == 0`

.

# Examples

Basic usage:

assert_eq!(U256::new(128).checked_div(U256::new(2)), Some(U256::new(64))); assert_eq!(U256::new(1).checked_div(U256::new(0)), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_div_euclid(self, rhs: Self) -> Option<Self>
```

[src]

Checked Euclidean division. Computes `self.div_euclid(rhs)`

, returning
`None`

if `rhs == 0`

.

# Examples

Basic usage:

assert_eq!(U256::new(128).checked_div_euclid(U256::new(2)), Some(U256::new(64))); assert_eq!(U256::new(1).checked_div_euclid(U256::new(0)), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_rem(self, rhs: Self) -> Option<Self>
```

[src]

Checked integer remainder. Computes `self % rhs`

, returning `None`

if
`rhs == 0`

.

# Examples

Basic usage:

assert_eq!(U256::new(5).checked_rem(U256::new(2)), Some(U256::new(1))); assert_eq!(U256::new(5).checked_rem(U256::new(0)), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_rem_euclid(self, rhs: Self) -> Option<Self>
```

[src]

Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`

, returning
`None`

if `rhs == 0`

.

# Examples

Basic usage:

assert_eq!(U256::new(5).checked_rem_euclid(U256::new(2)), Some(U256::new(1))); assert_eq!(U256::new(5).checked_rem_euclid(U256::new(0)), None);

`pub fn checked_neg(self) -> Option<Self>`

[src]

Checked negation. Computes `-self`

, returning `None`

unless `self == 0`

.

Note that negating any positive integer will overflow.

# Examples

Basic usage:

assert_eq!(U256::ZERO.checked_neg(), Some(U256::ZERO)); assert_eq!(U256::new(1).checked_neg(), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_shl(self, rhs: u32) -> Option<Self>
```

[src]

Checked shift left. Computes `self << rhs`

, returning `None`

if `rhs`

is
larger than or equal to the number of bits in `self`

.

# Examples

Basic usage:

assert_eq!(U256::new(0x1).checked_shl(4), Some(U256::new(0x10))); assert_eq!(U256::new(0x10).checked_shl(257), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_shr(self, rhs: u32) -> Option<Self>
```

[src]

Checked shift right. Computes `self >> rhs`

, returning `None`

if `rhs`

is larger than or equal to the number of bits in `self`

.

# Examples

Basic usage:

assert_eq!(U256::new(0x10).checked_shr(4), Some(U256::new(0x1))); assert_eq!(U256::new(0x10).checked_shr(257), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_pow(self, exp: u32) -> Option<Self>
```

[src]

Checked exponentiation. Computes `self.pow(exp)`

, returning `None`

if
overflow occurred.

# Examples

Basic usage:

assert_eq!(U256::new(2).checked_pow(5), Some(U256::new(32))); assert_eq!(U256::MAX.checked_pow(2), None);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn saturating_add(self, rhs: Self) -> Self
```

[src]

Saturating integer addition. Computes `self + rhs`

, saturating at the
numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(U256::new(100).saturating_add(U256::new(1)), U256::new(101)); assert_eq!(U256::MAX.saturating_add(U256::new(127)), U256::MAX);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn saturating_sub(self, rhs: Self) -> Self
```

[src]

Saturating integer subtraction. Computes `self - rhs`

, saturating at the
numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(U256::new(100).saturating_sub(U256::new(27)), U256::new(73)); assert_eq!(U256::new(13).saturating_sub(U256::new(127)), U256::new(0));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn saturating_mul(self, rhs: Self) -> Self
```

[src]

Saturating integer multiplication. Computes `self * rhs`

, saturating at
the numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(U256::new(2).saturating_mul(U256::new(10)), U256::new(20)); assert_eq!((U256::MAX).saturating_mul(U256::new(10)), U256::MAX);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn saturating_pow(self, exp: u32) -> Self
```

[src]

Saturating integer exponentiation. Computes `self.pow(exp)`

, saturating
at the numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(U256::new(4).saturating_pow(3), U256::new(64)); assert_eq!(U256::MAX.saturating_pow(2), U256::MAX);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_add(self, rhs: Self) -> Self
```

[src]

Wrapping (modular) addition. Computes `self + rhs`

, wrapping around at
the boundary of the type.

# Examples

Basic usage:

assert_eq!(U256::new(200).wrapping_add(U256::new(55)), U256::new(255)); assert_eq!(U256::new(200).wrapping_add(U256::MAX), U256::new(199));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_sub(self, rhs: Self) -> Self
```

[src]

Wrapping (modular) subtraction. Computes `self - rhs`

, wrapping around
at the boundary of the type.

# Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_sub(U256::new(100)), U256::new(0)); assert_eq!(U256::new(100).wrapping_sub(U256::MAX), U256::new(101));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_mul(self, rhs: Self) -> Self
```

[src]

Wrapping (modular) multiplication. Computes `self * rhs`

, wrapping
around at the boundary of the type.

# Examples

Basic usage:

Please note that this example is shared between integer types.
Which explains why `u8`

is used here.

assert_eq!(U256::new(10).wrapping_mul(U256::new(12)), U256::new(120)); assert_eq!(U256::MAX.wrapping_mul(U256::new(2)), U256::MAX - 1);

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_div(self, rhs: Self) -> Self
```

[src]

Wrapping (modular) division. Computes `self / rhs`

. Wrapped division on
unsigned types is just normal division. There's no way wrapping could
ever happen. This function exists, so that all operations are accounted
for in the wrapping operations.

# Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_div(U256::new(10)), U256::new(10));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_div_euclid(self, rhs: Self) -> Self
```

[src]

Wrapping Euclidean division. Computes `self.div_euclid(rhs)`

. Wrapped
division on unsigned types is just normal division. There's no way
wrapping could ever happen. This function exists, so that all operations
are accounted for in the wrapping operations. Since, for the positive
integers, all common definitions of division are equal, this is exactly
equal to `self.wrapping_div(rhs)`

.

# Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_div_euclid(U256::new(10)), U256::new(10));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_rem(self, rhs: Self) -> Self
```

[src]

Wrapping (modular) remainder. Computes `self % rhs`

. Wrapped remainder
calculation on unsigned types is just the regular remainder calculation.
There's no way wrapping could ever happen. This function exists, so that
all operations are accounted for in the wrapping operations.

# Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_rem(U256::new(10)), U256::new(0));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_rem_euclid(self, rhs: Self) -> Self
```

[src]

Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`

. Wrapped
modulo calculation on unsigned types is just the regular remainder
calculation. There's no way wrapping could ever happen. This function
exists, so that all operations are accounted for in the wrapping
operations. Since, for the positive integers, all common definitions of
division are equal, this is exactly equal to `self.wrapping_rem(rhs)`

.

# Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_rem_euclid(U256::new(10)), U256::new(0));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_neg(self) -> Self
```

[src]

Wrapping (modular) negation. Computes `-self`

, wrapping around at the
boundary of the type.

Since unsigned types do not have negative equivalents all applications
of this function will wrap (except for `-0`

). For values smaller than
the corresponding signed type's maximum the result is the same as
casting the corresponding signed value. Any larger values are equivalent
to `MAX + 1 - (val - MAX - 1)`

where `MAX`

is the corresponding signed
type's maximum.

# Examples

Basic usage:

Please note that this example is shared between integer types.
Which explains why `i8`

is used here.

assert_eq!(U256::new(100).wrapping_neg(), (-100i128).as_u256()); assert_eq!( U256::from_words(i128::MIN as _, 0).wrapping_neg(), U256::from_words(i128::MIN as _, 0), );

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_shl(self, rhs: u32) -> Self
```

[src]

Panic-free bitwise shift-left; yields `self << mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to
exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-left; the RHS of a wrapping
shift-left is restricted to the range of the type, rather than the bits
shifted out of the LHS being returned to the other end. The primitive
integer types all implement a `rotate_left`

function, which maybe what
you want instead.

# Examples

Basic usage:

assert_eq!(U256::new(1).wrapping_shl(7), U256::new(128)); assert_eq!(U256::new(1).wrapping_shl(128), U256::from_words(1, 0)); assert_eq!(U256::new(1).wrapping_shl(256), U256::new(1));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_shr(self, rhs: u32) -> Self
```

[src]

Panic-free bitwise shift-right; yields `self >> mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to
exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-right; the RHS of a
wrapping shift-right is restricted to the range of the type, rather than
the bits shifted out of the LHS being returned to the other end. The
primitive integer types all implement a `rotate_right`

function, which
may be what you want instead.

# Examples

Basic usage:

assert_eq!(U256::new(128).wrapping_shr(7), U256::new(1)); assert_eq!(U256::from_words(128, 0).wrapping_shr(128), U256::new(128)); assert_eq!(U256::new(128).wrapping_shr(256), U256::new(128));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_pow(self, exp: u32) -> Self
```

[src]

Wrapping (modular) exponentiation. Computes `self.pow(exp)`

, wrapping
around at the boundary of the type.

# Examples

Basic usage:

assert_eq!(U256::new(3).wrapping_pow(5), U256::new(243)); assert_eq!( U256::new(1337).wrapping_pow(42), U256::from_words( 45367329835866155830012179193722278514, 159264946433345088039815329994094210673, ), );

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_add(self, rhs: Self) -> (Self, bool)
```

[src]

Calculates `self`

+ `rhs`

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage

assert_eq!(U256::new(5).overflowing_add(U256::new(2)), (U256::new(7), false)); assert_eq!(U256::MAX.overflowing_add(U256::new(1)), (U256::new(0), true));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_sub(self, rhs: Self) -> (Self, bool)
```

[src]

Calculates `self`

- `rhs`

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage

assert_eq!(U256::new(5).overflowing_sub(U256::new(2)), (U256::new(3), false)); assert_eq!(U256::new(0).overflowing_sub(U256::new(1)), (U256::MAX, true));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_mul(self, rhs: Self) -> (Self, bool)
```

[src]

Calculates the multiplication of `self`

and `rhs`

.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage:

Please note that this example is shared between integer types.
Which explains why `u32`

is used here.

assert_eq!(U256::new(5).overflowing_mul(U256::new(2)), (U256::new(10), false)); assert_eq!( U256::MAX.overflowing_mul(U256::new(2)), (U256::MAX - 1, true), );

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_div(self, rhs: Self) -> (Self, bool)
```

[src]

Calculates the divisor when `self`

is divided by `rhs`

.

Returns a tuple of the divisor along with a boolean indicating whether
an arithmetic overflow would occur. Note that for unsigned integers
overflow never occurs, so the second value is always `false`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(U256::new(5).overflowing_div(U256::new(2)), (U256::new(2), false));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool)
```

[src]

Calculates the quotient of Euclidean division `self.div_euclid(rhs)`

.

Returns a tuple of the divisor along with a boolean indicating whether
an arithmetic overflow would occur. Note that for unsigned integers
overflow never occurs, so the second value is always `false`

. Since,
for the positive integers, all common definitions of division are equal,
this is exactly equal to `self.overflowing_div(rhs)`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(U256::new(5).overflowing_div_euclid(U256::new(2)), (U256::new(2), false));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_rem(self, rhs: Self) -> (Self, bool)
```

[src]

Calculates the remainder when `self`

is divided by `rhs`

.

Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is always
`false`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(U256::new(5).overflowing_rem(U256::new(2)), (U256::new(1), false));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool)
```

[src]

Calculates the remainder `self.rem_euclid(rhs)`

as if by Euclidean
division.

Returns a tuple of the modulo after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is always
`false`

. Since, for the positive integers, all common definitions of
division are equal, this operation is exactly equal to
`self.overflowing_rem(rhs)`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(U256::new(5).overflowing_rem_euclid(U256::new(2)), (U256::new(1), false));

`pub fn overflowing_neg(self) -> (Self, bool)`

[src]

Negates self in an overflowing fashion.

Returns `!self + 1`

using wrapping operations to return the value that
represents the negation of this unsigned value. Note that for positive
unsigned values overflow always occurs, but negating 0 does not
overflow.

# Examples

Basic usage

assert_eq!(U256::new(0).overflowing_neg(), (U256::new(0), false)); assert_eq!(U256::new(2).overflowing_neg(), ((-2i32).as_u256(), true));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_shl(self, rhs: u32) -> (Self, bool)
```

[src]

Shifts self left by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

# Examples

Basic usage

assert_eq!(U256::new(0x1).overflowing_shl(4), (U256::new(0x10), false)); assert_eq!(U256::new(0x1).overflowing_shl(260), (U256::new(0x10), true));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_shr(self, rhs: u32) -> (Self, bool)
```

[src]

Shifts self right by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

# Examples

Basic usage

assert_eq!(U256::new(0x10).overflowing_shr(4), (U256::new(0x1), false)); assert_eq!(U256::new(0x10).overflowing_shr(260), (U256::new(0x1), true));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_pow(self, exp: u32) -> (Self, bool)
```

[src]

Raises self to the power of `exp`

, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

# Examples

Basic usage:

assert_eq!(U256::new(3).overflowing_pow(5), (U256::new(243), false)); assert_eq!( U256::new(1337).overflowing_pow(42), ( U256::from_words( 45367329835866155830012179193722278514, 159264946433345088039815329994094210673, ), true, ) );

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn pow(self, exp: u32) -> Self
```

[src]

Raises self to the power of `exp`

, using exponentiation by squaring.

# Examples

Basic usage:

assert_eq!(U256::new(2).pow(5), U256::new(32));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn div_euclid(self, rhs: Self) -> Self
```

[src]

Performs Euclidean division.

Since, for the positive integers, all common definitions of division are
equal, this is exactly equal to `self / rhs`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(U256::new(7).div_euclid(U256::new(4)), U256::new(1));

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn rem_euclid(self, rhs: Self) -> Self
```

[src]

Calculates the least remainder of `self (mod rhs)`

.

Since, for the positive integers, all common definitions of division are
equal, this is exactly equal to `self % rhs`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(U256::new(7).rem_euclid(U256::new(4)), U256::new(3));

`pub fn is_power_of_two(self) -> bool`

[src]

Returns `true`

if and only if `self == 2^k`

for some `k`

.

# Examples

Basic usage:

assert!(U256::new(16).is_power_of_two()); assert!(!U256::new(10).is_power_of_two());

`pub fn next_power_of_two(self) -> Self`

[src]

Returns the smallest power of two greater than or equal to `self`

.

When return value overflows (i.e., `self > (1 << (N-1))`

for type `uN`

),
it panics in debug mode and return value is wrapped to 0 in release mode
(the only situation in which method can return 0).

# Examples

Basic usage:

assert_eq!(U256::new(2).next_power_of_two(), U256::new(2)); assert_eq!(U256::new(3).next_power_of_two(), U256::new(4));

`pub fn checked_next_power_of_two(self) -> Option<Self>`

[src]

Returns the smallest power of two greater than or equal to `n`

. If the
next power of two is greater than the type's maximum value, `None`

is
returned, otherwise the power of two is wrapped in `Some`

.

# Examples

Basic usage:

assert_eq!(U256::new(2).checked_next_power_of_two(), Some(U256::new(2))); assert_eq!(U256::new(3).checked_next_power_of_two(), Some(U256::new(4))); assert_eq!(U256::MAX.checked_next_power_of_two(), None);

`pub fn wrapping_next_power_of_two(self) -> Self`

[src]

Returns the smallest power of two greater than or equal to `n`

. If the
next power of two is greater than the type's maximum value, the return
value is wrapped to `0`

.

# Examples

Basic usage:

assert_eq!(U256::new(2).wrapping_next_power_of_two(), U256::new(2)); assert_eq!(U256::new(3).wrapping_next_power_of_two(), U256::new(4)); assert_eq!(U256::MAX.wrapping_next_power_of_two(), U256::ZERO);

`pub fn to_be_bytes(self) -> [u8; 32]`

[src]

Return the memory representation of this integer as a byte array in big endian (network) byte order.

# Examples

let bytes = U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ); assert_eq!( bytes.to_be_bytes(), [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, ], );

`pub fn to_le_bytes(self) -> [u8; 32]`

[src]

Return the memory representation of this integer as a byte array in little endian byte order.

# Examples

let bytes = U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ); assert_eq!( bytes.to_le_bytes(), [ 0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, ], );

`pub fn to_ne_bytes(self) -> [u8; 32]`

[src]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform's native endianness is used, portable code should
use `to_be_bytes`

or `to_le_bytes`

, as appropriate, instead.

# Examples

let bytes = U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ); assert_eq!( bytes.to_ne_bytes(), if cfg!(target_endian = "big") { [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, ] } else { [ 0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, ] } );

`pub fn from_be_bytes(bytes: [u8; 32]) -> Self`

[src]

Create an integer value from its representation as a byte array in big endian.

# Examples

let value = U256::from_be_bytes([ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, ]); assert_eq!( value, U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ), );

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_be_U256(input: &mut &[u8]) -> U256 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>()); *input = rest; U256::from_be_bytes(int_bytes.try_into().unwrap()) }

`pub fn from_le_bytes(bytes: [u8; 32]) -> Self`

[src]

Create an integer value from its representation as a byte array in little endian.

# Examples

let value = U256::from_le_bytes([ 0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, ]); assert_eq!( value, U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ), );

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_be_U256(input: &mut &[u8]) -> U256 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>()); *input = rest; U256::from_le_bytes(int_bytes.try_into().unwrap()) }

`pub fn from_ne_bytes(bytes: [u8; 32]) -> Self`

[src]

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform's native endianness is used, portable code likely
wants to use `from_be_bytes`

or `from_le_bytes`

, as appropriate
instead.

# Examples

let value = U256::from_ne_bytes(if cfg!(target_endian = "big") { [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, ] } else { [ 0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, ] }); assert_eq!( value, U256::from_words( 0x00010203_04050607_08090a0b_0c0d0e0f, 0x10111213_14151617_18191a1b_1c1d1e1f, ), );

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_be_U256(input: &mut &[u8]) -> U256 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>()); *input = rest; U256::from_ne_bytes(int_bytes.try_into().unwrap()) }

`impl U256`

[src]

`pub const `**ZERO**: Self

[src]

**ZERO**: Self

The additive identity for this integer type, i.e. `0`

.

`pub const `**ONE**: Self

[src]

**ONE**: Self

The multiplicative identity for this integer type, i.e. `1`

.

`pub const fn new(value: u128) -> Self`

[src]

Creates a new 256-bit integer value from a primitive `u128`

integer.

`pub const fn from_words(hi: u128, lo: u128) -> Self`

[src]

Creates a new 256-bit integer value from high and low words.

`pub const fn into_words(self) -> (u128, u128)`

[src]

Splits a 256-bit integer into high and low words.

`pub fn low(&self) -> &u128`

[src]

Get the low 128-bit word for this unsigned integer.

`pub fn low_mut(&mut self) -> &mut u128`

[src]

Get the low 128-bit word for this unsigned integer as a mutable reference.

`pub fn high(&self) -> &u128`

[src]

Get the high 128-bit word for this unsigned integer.

`pub fn high_mut(&mut self) -> &mut u128`

[src]

Get the high 128-bit word for this unsigned integer as a mutable reference.

`pub const fn as_i8(self) -> i8`

[src]

Cast to a primitive `i8`

.

`pub const fn as_i16(self) -> i16`

[src]

Cast to a primitive `i16`

.

`pub const fn as_i32(self) -> i32`

[src]

Cast to a primitive `i32`

.

`pub const fn as_i64(self) -> i64`

[src]

Cast to a primitive `i64`

.

`pub const fn as_i128(self) -> i128`

[src]

Cast to a primitive `i128`

.

`pub const fn as_u8(self) -> u8`

[src]

Cast to a primitive `u8`

.

`pub const fn as_u16(self) -> u16`

[src]

Cast to a primitive `u16`

.

`pub const fn as_u32(self) -> u32`

[src]

Cast to a primitive `u32`

.

`pub const fn as_u64(self) -> u64`

[src]

Cast to a primitive `u64`

.

`pub const fn as_u128(self) -> u128`

[src]

Cast to a primitive `u128`

.

`pub const fn as_isize(self) -> isize`

[src]

Cast to a primitive `isize`

.

`pub const fn as_usize(self) -> usize`

[src]

Cast to a primitive `usize`

.

`pub fn as_f32(self) -> f32`

[src]

Cast to a primitive `f32`

.

`pub fn as_f64(self) -> f64`

[src]

Cast to a primitive `f64`

.

## Trait Implementations

`impl<'_, '_> Add<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> Add<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> Add<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Add<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Add<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: U256) -> Self::Output`

[src]

`impl Add<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> Add<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: u128) -> Self::Output`

[src]

`impl Add<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `+`

operator.

`fn add(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> AddAssign<&'_ U256> for U256`

[src]

`fn add_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> AddAssign<&'_ u128> for U256`

[src]

`fn add_assign(&mut self, rhs: &u128)`

[src]

`impl AddAssign<U256> for U256`

[src]

`fn add_assign(&mut self, rhs: U256)`

[src]

`impl AddAssign<u128> for U256`

[src]

`fn add_assign(&mut self, rhs: u128)`

[src]

`impl AsU256 for U256`

[src]

`impl Binary for U256`

[src]

`impl<'_, '_> BitAnd<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> BitAnd<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> BitAnd<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> BitAnd<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> BitAnd<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: U256) -> Self::Output`

[src]

`impl BitAnd<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> BitAnd<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: u128) -> Self::Output`

[src]

`impl BitAnd<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> BitAndAssign<&'_ U256> for U256`

[src]

`fn bitand_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> BitAndAssign<&'_ u128> for U256`

[src]

`fn bitand_assign(&mut self, rhs: &u128)`

[src]

`impl BitAndAssign<U256> for U256`

[src]

`fn bitand_assign(&mut self, rhs: U256)`

[src]

`impl BitAndAssign<u128> for U256`

[src]

`fn bitand_assign(&mut self, rhs: u128)`

[src]

`impl<'_, '_> BitOr<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> BitOr<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> BitOr<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> BitOr<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> BitOr<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: U256) -> Self::Output`

[src]

`impl BitOr<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> BitOr<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: u128) -> Self::Output`

[src]

`impl BitOr<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> BitOrAssign<&'_ U256> for U256`

[src]

`fn bitor_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> BitOrAssign<&'_ u128> for U256`

[src]

`fn bitor_assign(&mut self, rhs: &u128)`

[src]

`impl BitOrAssign<U256> for U256`

[src]

`fn bitor_assign(&mut self, rhs: U256)`

[src]

`impl BitOrAssign<u128> for U256`

[src]

`fn bitor_assign(&mut self, rhs: u128)`

[src]

`impl<'_, '_> BitXor<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> BitXor<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> BitXor<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> BitXor<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> BitXor<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: U256) -> Self::Output`

[src]

`impl BitXor<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> BitXor<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: u128) -> Self::Output`

[src]

`impl BitXor<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `^`

operator.

`fn bitxor(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> BitXorAssign<&'_ U256> for U256`

[src]

`fn bitxor_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> BitXorAssign<&'_ u128> for U256`

[src]

`fn bitxor_assign(&mut self, rhs: &u128)`

[src]

`impl BitXorAssign<U256> for U256`

[src]

`fn bitxor_assign(&mut self, rhs: U256)`

[src]

`impl BitXorAssign<u128> for U256`

[src]

`fn bitxor_assign(&mut self, rhs: u128)`

[src]

`impl Clone for U256`

[src]

`fn clone(&self) -> U256`

[src]

`fn clone_from(&mut self, source: &Self)`

1.0.0[src]

`impl Copy for U256`

[src]

`impl Debug for U256`

[src]

`impl Default for U256`

[src]

`impl Display for U256`

[src]

`impl<'_> Div<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: Self) -> Self::Output`

[src]

`impl<'_> Div<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> Div<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Div<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Div<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: U256) -> Self::Output`

[src]

`impl Div<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> Div<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: u128) -> Self::Output`

[src]

`impl Div<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `/`

operator.

`fn div(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> DivAssign<&'_ U256> for U256`

[src]

`fn div_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> DivAssign<&'_ u128> for U256`

[src]

`fn div_assign(&mut self, rhs: &u128)`

[src]

`impl DivAssign<U256> for U256`

[src]

`fn div_assign(&mut self, rhs: U256)`

[src]

`impl DivAssign<u128> for U256`

[src]

`fn div_assign(&mut self, rhs: u128)`

[src]

`impl Eq for U256`

[src]

`impl From<bool> for U256`

[src]

`impl From<u128> for U256`

[src]

`impl From<u16> for U256`

[src]

`impl From<u32> for U256`

[src]

`impl From<u64> for U256`

[src]

`impl From<u8> for U256`

[src]

`impl FromStr for U256`

[src]

`type Err = ParseIntError`

The associated error which can be returned from parsing.

`fn from_str(s: &str) -> Result<Self, Self::Err>`

[src]

`impl Hash for U256`

[src]

`fn hash<__H: Hasher>(&self, state: &mut __H)`

[src]

`fn hash_slice<H>(data: &[Self], state: &mut H) where`

H: Hasher,

1.3.0[src]

H: Hasher,

`impl Into<f32> for U256`

[src]

`impl Into<f64> for U256`

[src]

`impl LowerExp for U256`

[src]

`impl LowerHex for U256`

[src]

`impl<'_, '_> Mul<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> Mul<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> Mul<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Mul<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Mul<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: U256) -> Self::Output`

[src]

`impl Mul<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> Mul<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: u128) -> Self::Output`

[src]

`impl Mul<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `*`

operator.

`fn mul(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> MulAssign<&'_ U256> for U256`

[src]

`fn mul_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> MulAssign<&'_ u128> for U256`

[src]

`fn mul_assign(&mut self, rhs: &u128)`

[src]

`impl MulAssign<U256> for U256`

[src]

`fn mul_assign(&mut self, rhs: U256)`

[src]

`impl MulAssign<u128> for U256`

[src]

`fn mul_assign(&mut self, rhs: u128)`

[src]

`impl Not for U256`

[src]

`type Output = U256`

The resulting type after applying the `!`

operator.

`fn not(self) -> Self::Output`

[src]

`impl<'_> Not for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `!`

operator.

`fn not(self) -> Self::Output`

[src]

`impl Octal for U256`

[src]

`impl Ord for U256`

[src]

`fn cmp(&self, other: &U256) -> Ordering`

[src]

`#[must_use]fn max(self, other: Self) -> Self`

1.21.0[src]

`#[must_use]fn min(self, other: Self) -> Self`

1.21.0[src]

`#[must_use]fn clamp(self, min: Self, max: Self) -> Self`

[src]

`impl PartialEq<U256> for U256`

[src]

`impl PartialEq<u128> for U256`

[src]

`impl PartialOrd<U256> for U256`

[src]

`fn partial_cmp(&self, rhs: &Self) -> Option<Ordering>`

[src]

`#[must_use]fn lt(&self, other: &Rhs) -> bool`

1.0.0[src]

`#[must_use]fn le(&self, other: &Rhs) -> bool`

1.0.0[src]

`#[must_use]fn gt(&self, other: &Rhs) -> bool`

1.0.0[src]

`#[must_use]fn ge(&self, other: &Rhs) -> bool`

1.0.0[src]

`impl PartialOrd<u128> for U256`

[src]

`fn partial_cmp(&self, rhs: &u128) -> Option<Ordering>`

[src]

`#[must_use]fn lt(&self, other: &Rhs) -> bool`

1.0.0[src]

`#[must_use]fn le(&self, other: &Rhs) -> bool`

1.0.0[src]

`#[must_use]fn gt(&self, other: &Rhs) -> bool`

1.0.0[src]

`#[must_use]fn ge(&self, other: &Rhs) -> bool`

1.0.0[src]

`impl<'a> Product<&'a U256> for U256`

[src]

`impl Product<U256> for U256`

[src]

`impl<'_> Rem<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: Self) -> Self::Output`

[src]

`impl<'_> Rem<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> Rem<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Rem<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Rem<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: U256) -> Self::Output`

[src]

`impl Rem<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> Rem<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: u128) -> Self::Output`

[src]

`impl Rem<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `%`

operator.

`fn rem(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> RemAssign<&'_ U256> for U256`

[src]

`fn rem_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> RemAssign<&'_ u128> for U256`

[src]

`fn rem_assign(&mut self, rhs: &u128)`

[src]

`impl RemAssign<U256> for U256`

[src]

`fn rem_assign(&mut self, rhs: U256)`

[src]

`impl RemAssign<u128> for U256`

[src]

`fn rem_assign(&mut self, rhs: u128)`

[src]

`impl<'_, '_> Shl<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> Shl<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ i128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i128) -> Self::Output`

[src]

`impl<'_> Shl<&'_ i128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i128) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ i16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i16) -> Self::Output`

[src]

`impl<'_> Shl<&'_ i16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i16) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ i32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i32) -> Self::Output`

[src]

`impl<'_> Shl<&'_ i32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i32) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ i64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i64) -> Self::Output`

[src]

`impl<'_> Shl<&'_ i64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i64) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ i8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i8) -> Self::Output`

[src]

`impl<'_> Shl<&'_ i8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &i8) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ isize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &isize) -> Self::Output`

[src]

`impl<'_> Shl<&'_ isize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &isize) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Shl<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ u16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u16) -> Self::Output`

[src]

`impl<'_> Shl<&'_ u16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u16) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ u32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u32) -> Self::Output`

[src]

`impl<'_> Shl<&'_ u32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u32) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ u64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u64) -> Self::Output`

[src]

`impl<'_> Shl<&'_ u64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u64) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ u8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u8) -> Self::Output`

[src]

`impl<'_> Shl<&'_ u8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &u8) -> Self::Output`

[src]

`impl<'_, '_> Shl<&'_ usize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &usize) -> Self::Output`

[src]

`impl<'_> Shl<&'_ usize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: &usize) -> Self::Output`

[src]

`impl<'_> Shl<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: U256) -> Self::Output`

[src]

`impl Shl<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> Shl<i128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i128) -> Self::Output`

[src]

`impl Shl<i128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i128) -> Self::Output`

[src]

`impl<'_> Shl<i16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i16) -> Self::Output`

[src]

`impl Shl<i16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i16) -> Self::Output`

[src]

`impl<'_> Shl<i32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i32) -> Self::Output`

[src]

`impl Shl<i32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i32) -> Self::Output`

[src]

`impl<'_> Shl<i64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i64) -> Self::Output`

[src]

`impl Shl<i64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i64) -> Self::Output`

[src]

`impl<'_> Shl<i8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i8) -> Self::Output`

[src]

`impl Shl<i8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: i8) -> Self::Output`

[src]

`impl<'_> Shl<isize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: isize) -> Self::Output`

[src]

`impl Shl<isize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: isize) -> Self::Output`

[src]

`impl<'_> Shl<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u128) -> Self::Output`

[src]

`impl Shl<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> Shl<u16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u16) -> Self::Output`

[src]

`impl Shl<u16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u16) -> Self::Output`

[src]

`impl<'_> Shl<u32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u32) -> Self::Output`

[src]

`impl Shl<u32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u32) -> Self::Output`

[src]

`impl<'_> Shl<u64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u64) -> Self::Output`

[src]

`impl Shl<u64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u64) -> Self::Output`

[src]

`impl<'_> Shl<u8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u8) -> Self::Output`

[src]

`impl Shl<u8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: u8) -> Self::Output`

[src]

`impl<'_> Shl<usize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: usize) -> Self::Output`

[src]

`impl Shl<usize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `<<`

operator.

`fn shl(self, rhs: usize) -> Self::Output`

[src]

`impl<'_> ShlAssign<&'_ U256> for U256`

[src]

`fn shl_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> ShlAssign<&'_ i128> for U256`

[src]

`fn shl_assign(&mut self, rhs: &i128)`

[src]

`impl<'_> ShlAssign<&'_ i16> for U256`

[src]

`fn shl_assign(&mut self, rhs: &i16)`

[src]

`impl<'_> ShlAssign<&'_ i32> for U256`

[src]

`fn shl_assign(&mut self, rhs: &i32)`

[src]

`impl<'_> ShlAssign<&'_ i64> for U256`

[src]

`fn shl_assign(&mut self, rhs: &i64)`

[src]

`impl<'_> ShlAssign<&'_ i8> for U256`

[src]

`fn shl_assign(&mut self, rhs: &i8)`

[src]

`impl<'_> ShlAssign<&'_ isize> for U256`

[src]

`fn shl_assign(&mut self, rhs: &isize)`

[src]

`impl<'_> ShlAssign<&'_ u128> for U256`

[src]

`fn shl_assign(&mut self, rhs: &u128)`

[src]

`impl<'_> ShlAssign<&'_ u16> for U256`

[src]

`fn shl_assign(&mut self, rhs: &u16)`

[src]

`impl<'_> ShlAssign<&'_ u32> for U256`

[src]

`fn shl_assign(&mut self, rhs: &u32)`

[src]

`impl<'_> ShlAssign<&'_ u64> for U256`

[src]

`fn shl_assign(&mut self, rhs: &u64)`

[src]

`impl<'_> ShlAssign<&'_ u8> for U256`

[src]

`fn shl_assign(&mut self, rhs: &u8)`

[src]

`impl<'_> ShlAssign<&'_ usize> for U256`

[src]

`fn shl_assign(&mut self, rhs: &usize)`

[src]

`impl ShlAssign<U256> for U256`

[src]

`fn shl_assign(&mut self, rhs: U256)`

[src]

`impl ShlAssign<i128> for U256`

[src]

`fn shl_assign(&mut self, rhs: i128)`

[src]

`impl ShlAssign<i16> for U256`

[src]

`fn shl_assign(&mut self, rhs: i16)`

[src]

`impl ShlAssign<i32> for U256`

[src]

`fn shl_assign(&mut self, rhs: i32)`

[src]

`impl ShlAssign<i64> for U256`

[src]

`fn shl_assign(&mut self, rhs: i64)`

[src]

`impl ShlAssign<i8> for U256`

[src]

`fn shl_assign(&mut self, rhs: i8)`

[src]

`impl ShlAssign<isize> for U256`

[src]

`fn shl_assign(&mut self, rhs: isize)`

[src]

`impl ShlAssign<u128> for U256`

[src]

`fn shl_assign(&mut self, rhs: u128)`

[src]

`impl ShlAssign<u16> for U256`

[src]

`fn shl_assign(&mut self, rhs: u16)`

[src]

`impl ShlAssign<u32> for U256`

[src]

`fn shl_assign(&mut self, rhs: u32)`

[src]

`impl ShlAssign<u64> for U256`

[src]

`fn shl_assign(&mut self, rhs: u64)`

[src]

`impl ShlAssign<u8> for U256`

[src]

`fn shl_assign(&mut self, rhs: u8)`

[src]

`impl ShlAssign<usize> for U256`

[src]

`fn shl_assign(&mut self, rhs: usize)`

[src]

`impl<'_, '_> Shr<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> Shr<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ i128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i128) -> Self::Output`

[src]

`impl<'_> Shr<&'_ i128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i128) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ i16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i16) -> Self::Output`

[src]

`impl<'_> Shr<&'_ i16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i16) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ i32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i32) -> Self::Output`

[src]

`impl<'_> Shr<&'_ i32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i32) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ i64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i64) -> Self::Output`

[src]

`impl<'_> Shr<&'_ i64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i64) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ i8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i8) -> Self::Output`

[src]

`impl<'_> Shr<&'_ i8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &i8) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ isize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &isize) -> Self::Output`

[src]

`impl<'_> Shr<&'_ isize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &isize) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Shr<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ u16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u16) -> Self::Output`

[src]

`impl<'_> Shr<&'_ u16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u16) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ u32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u32) -> Self::Output`

[src]

`impl<'_> Shr<&'_ u32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u32) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ u64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u64) -> Self::Output`

[src]

`impl<'_> Shr<&'_ u64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u64) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ u8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u8) -> Self::Output`

[src]

`impl<'_> Shr<&'_ u8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &u8) -> Self::Output`

[src]

`impl<'_, '_> Shr<&'_ usize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &usize) -> Self::Output`

[src]

`impl<'_> Shr<&'_ usize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: &usize) -> Self::Output`

[src]

`impl<'_> Shr<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: U256) -> Self::Output`

[src]

`impl Shr<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> Shr<i128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i128) -> Self::Output`

[src]

`impl Shr<i128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i128) -> Self::Output`

[src]

`impl<'_> Shr<i16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i16) -> Self::Output`

[src]

`impl Shr<i16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i16) -> Self::Output`

[src]

`impl<'_> Shr<i32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i32) -> Self::Output`

[src]

`impl Shr<i32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i32) -> Self::Output`

[src]

`impl<'_> Shr<i64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i64) -> Self::Output`

[src]

`impl Shr<i64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i64) -> Self::Output`

[src]

`impl<'_> Shr<i8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i8) -> Self::Output`

[src]

`impl Shr<i8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: i8) -> Self::Output`

[src]

`impl<'_> Shr<isize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: isize) -> Self::Output`

[src]

`impl Shr<isize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: isize) -> Self::Output`

[src]

`impl<'_> Shr<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u128) -> Self::Output`

[src]

`impl Shr<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> Shr<u16> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u16) -> Self::Output`

[src]

`impl Shr<u16> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u16) -> Self::Output`

[src]

`impl<'_> Shr<u32> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u32) -> Self::Output`

[src]

`impl Shr<u32> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u32) -> Self::Output`

[src]

`impl<'_> Shr<u64> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u64) -> Self::Output`

[src]

`impl Shr<u64> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u64) -> Self::Output`

[src]

`impl<'_> Shr<u8> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u8) -> Self::Output`

[src]

`impl Shr<u8> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: u8) -> Self::Output`

[src]

`impl<'_> Shr<usize> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: usize) -> Self::Output`

[src]

`impl Shr<usize> for U256`

[src]

`type Output = U256`

The resulting type after applying the `>>`

operator.

`fn shr(self, rhs: usize) -> Self::Output`

[src]

`impl<'_> ShrAssign<&'_ U256> for U256`

[src]

`fn shr_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> ShrAssign<&'_ i128> for U256`

[src]

`fn shr_assign(&mut self, rhs: &i128)`

[src]

`impl<'_> ShrAssign<&'_ i16> for U256`

[src]

`fn shr_assign(&mut self, rhs: &i16)`

[src]

`impl<'_> ShrAssign<&'_ i32> for U256`

[src]

`fn shr_assign(&mut self, rhs: &i32)`

[src]

`impl<'_> ShrAssign<&'_ i64> for U256`

[src]

`fn shr_assign(&mut self, rhs: &i64)`

[src]

`impl<'_> ShrAssign<&'_ i8> for U256`

[src]

`fn shr_assign(&mut self, rhs: &i8)`

[src]

`impl<'_> ShrAssign<&'_ isize> for U256`

[src]

`fn shr_assign(&mut self, rhs: &isize)`

[src]

`impl<'_> ShrAssign<&'_ u128> for U256`

[src]

`fn shr_assign(&mut self, rhs: &u128)`

[src]

`impl<'_> ShrAssign<&'_ u16> for U256`

[src]

`fn shr_assign(&mut self, rhs: &u16)`

[src]

`impl<'_> ShrAssign<&'_ u32> for U256`

[src]

`fn shr_assign(&mut self, rhs: &u32)`

[src]

`impl<'_> ShrAssign<&'_ u64> for U256`

[src]

`fn shr_assign(&mut self, rhs: &u64)`

[src]

`impl<'_> ShrAssign<&'_ u8> for U256`

[src]

`fn shr_assign(&mut self, rhs: &u8)`

[src]

`impl<'_> ShrAssign<&'_ usize> for U256`

[src]

`fn shr_assign(&mut self, rhs: &usize)`

[src]

`impl ShrAssign<U256> for U256`

[src]

`fn shr_assign(&mut self, rhs: U256)`

[src]

`impl ShrAssign<i128> for U256`

[src]

`fn shr_assign(&mut self, rhs: i128)`

[src]

`impl ShrAssign<i16> for U256`

[src]

`fn shr_assign(&mut self, rhs: i16)`

[src]

`impl ShrAssign<i32> for U256`

[src]

`fn shr_assign(&mut self, rhs: i32)`

[src]

`impl ShrAssign<i64> for U256`

[src]

`fn shr_assign(&mut self, rhs: i64)`

[src]

`impl ShrAssign<i8> for U256`

[src]

`fn shr_assign(&mut self, rhs: i8)`

[src]

`impl ShrAssign<isize> for U256`

[src]

`fn shr_assign(&mut self, rhs: isize)`

[src]

`impl ShrAssign<u128> for U256`

[src]

`fn shr_assign(&mut self, rhs: u128)`

[src]

`impl ShrAssign<u16> for U256`

[src]

`fn shr_assign(&mut self, rhs: u16)`

[src]

`impl ShrAssign<u32> for U256`

[src]

`fn shr_assign(&mut self, rhs: u32)`

[src]

`impl ShrAssign<u64> for U256`

[src]

`fn shr_assign(&mut self, rhs: u64)`

[src]

`impl ShrAssign<u8> for U256`

[src]

`fn shr_assign(&mut self, rhs: u8)`

[src]

`impl ShrAssign<usize> for U256`

[src]

`fn shr_assign(&mut self, rhs: usize)`

[src]

`impl StructuralEq for U256`

[src]

`impl StructuralPartialEq for U256`

[src]

`impl<'_, '_> Sub<&'_ U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_> Sub<&'_ U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: &U256) -> Self::Output`

[src]

`impl<'_, '_> Sub<&'_ u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Sub<&'_ u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: &u128) -> Self::Output`

[src]

`impl<'_> Sub<U256> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: U256) -> Self::Output`

[src]

`impl Sub<U256> for U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: U256) -> Self::Output`

[src]

`impl<'_> Sub<u128> for &'_ U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: u128) -> Self::Output`

[src]

`impl Sub<u128> for U256`

[src]

`type Output = U256`

The resulting type after applying the `-`

operator.

`fn sub(self, rhs: u128) -> Self::Output`

[src]

`impl<'_> SubAssign<&'_ U256> for U256`

[src]

`fn sub_assign(&mut self, rhs: &U256)`

[src]

`impl<'_> SubAssign<&'_ u128> for U256`

[src]

`fn sub_assign(&mut self, rhs: &u128)`

[src]

`impl SubAssign<U256> for U256`

[src]

`fn sub_assign(&mut self, rhs: U256)`

[src]

`impl SubAssign<u128> for U256`

[src]

`fn sub_assign(&mut self, rhs: u128)`

[src]

`impl<'a> Sum<&'a U256> for U256`

[src]

`impl Sum<U256> for U256`

[src]

`impl TryFrom<i128> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(value: i128) -> Result<Self, Self::Error>`

[src]

`impl TryFrom<i16> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(value: i16) -> Result<Self, Self::Error>`

[src]

`impl TryFrom<i32> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(value: i32) -> Result<Self, Self::Error>`

[src]

`impl TryFrom<i64> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(value: i64) -> Result<Self, Self::Error>`

[src]

`impl TryFrom<i8> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(value: i8) -> Result<Self, Self::Error>`

[src]

`impl TryFrom<isize> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(value: isize) -> Result<Self, Self::Error>`

[src]

`impl TryFrom<usize> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(value: usize) -> Result<Self, Self::Error>`

[src]

`impl TryInto<i128> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<i128, Self::Error>`

[src]

`impl TryInto<i16> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<i16, Self::Error>`

[src]

`impl TryInto<i32> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<i32, Self::Error>`

[src]

`impl TryInto<i64> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<i64, Self::Error>`

[src]

`impl TryInto<i8> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<i8, Self::Error>`

[src]

`impl TryInto<isize> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<isize, Self::Error>`

[src]

`impl TryInto<u128> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<u128, Self::Error>`

[src]

`impl TryInto<u16> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<u16, Self::Error>`

[src]

`impl TryInto<u32> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<u32, Self::Error>`

[src]

`impl TryInto<u64> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<u64, Self::Error>`

[src]

`impl TryInto<u8> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<u8, Self::Error>`

[src]

`impl TryInto<usize> for U256`

[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<usize, Self::Error>`

[src]

`impl UpperExp for U256`

[src]

`impl UpperHex for U256`

[src]

## Auto Trait Implementations

## Blanket Implementations

`impl<T> Any for T where`

T: 'static + ?Sized,

[src]

T: 'static + ?Sized,

`impl<T> Borrow<T> for T where`

T: ?Sized,

[src]

T: ?Sized,

`impl<T> BorrowMut<T> for T where`

T: ?Sized,

[src]

T: ?Sized,

`fn borrow_mut(&mut self) -> &mut T`

[src]

`impl<T> From<T> for T`

[src]

`impl<T, U> Into<U> for T where`

U: From<T>,

[src]

U: From<T>,

`impl<T, U> TryFrom<U> for T where`

U: Into<T>,

[src]

U: Into<T>,

`type Error = Infallible`

The type returned in the event of a conversion error.

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

[src]

`impl<T, U> TryInto<U> for T where`

U: TryFrom<T>,

[src]

U: TryFrom<T>,